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Outline of today'’s talk

= Definitions relevant to Natural Experiments

= Overview of Common Methods w/ Examples

= Pragmatic Motivating Example: CRISP Study

= Recent Developments w/ Time-varying Start Times

= Future Potential in Natural Experiments

= Checklist when designing an analysis for a Natural Experiment



Context

siren

Social Interventions Research

& Evaluation Network About Us v News & Events v Engagement Grants

Our Mission

Our mission is to improve health and health equity by advancing high quality
research on health care sector strategies to improve social conditions.




Randomized Trials
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Realistic view of most scientific studies
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Detinition of Natural Experiments

= Any event not under the

control of a researcher that 2222
divides the population into  seesse
exposed (”intervention”) coee oo
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Source: Craig, Peter, et al. "Using natural experiments to evaluate population health interventions: new
Medical Research Council guidance." J Epidemiol Community Health 66.12 (2012): 1182-1186.



How to determine if it's a Natural Experiment?
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Source: Wharam F. What are Natural Experiments and Why Should we Study Them?
https://www.uclahealth.org/sites/default/files/documents/Final%20Frank%20Day%202%20slides.pptx



Natural Experiments: Difference-in-differences
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Figure Source: https://rpubs.com/Thomas_Buddemberg/930519



Research Letter
August 20, 2021

Association of Remote vs In-Person Benefit Delivery
With WIC Participation During the COVID-19 Pandemic

Aditi Vasan, MD, MSHP'; Chén C. Kenyon, MD, MSHP?; Christina A. Roberto, PhD?; Alexander G. Fiks, MD, MSCE'; Atheendar
S. Venkataramani, MD, PhD?

» Author Affiliations | Article Information
JAMA. 2021;326(15):1531-1533. doi:10.1001/jama.2021.14356
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NATURAL EXPERIMENTS

Disparities in Biomarkers for Patients With Diabetes After the
Affordable Care Act

Marino, Miguel PhD""; Angier, Heather PhD, MPH"; Fankhauser, Katie MPH"; Valenzuela, Steele MS"; Hoopes, Megan MPH;
Heintzman, John MD, MPH"%; DeVoe, Jennifer MD, DPhil"¥; Moreno, Laura MPH"; Huguet, Nathalie PhD"

Author Information®©

Ditterence-in-differences Examples

Medical Care 58():p S31-S39, June 2020. | DOI: 10:1097/MLR.0000000000001257
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Natural Experiments: Interrupted time series
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Source: Turner, S.L., et al. Comparison of six statistical methods for interrupted time series studies: empirical
evaluation of 190 published series. BMC Med Res Methodol 21, 134 (2021).



Interrupted time series Examples

Original Investigation

November 1, 2022

Association of Texas' 2021 Ban on Abortion in Early
Pregnancy With the Number of Facility-Based
Abortions in Texas and Surrounding States

Kari White, PhD, MPH'-2; Gracia Sierra, PhD, MS2:3; Klaira Lerma, MPH23; et al

» Author Affiliations | Article Information

JAMA. 2022;328(20):2048-2055. doi:10.1001/jama.2022.20423
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Original Investigation | Medical Education

January 19, 2021

Measurement of American Indian and Alaska Native
Racial Identity Among Medical School Applicants,
Matriculants, and Graduates, 1996-2017

Erik Brodt, MD'-2; Steele Valenzuela, MS34; Allison Empey, MD>€; Amanda Bruegl, MD, MS7:8; Dove Spector, BS°10;
Miguel Marino, PhD'1112; Patricia A. Carney, PhD, MS!

» Author Affiliations | Article Information
JAMA Netw Open. 2021;4(1):e2032550. doi:10.1001/jamanetworkopen.2020.32550

Figure 1. Number of Applicants From 1996-2017
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Blue diamonds indicate the observed raw counts for the respective years for applicants. The shading around the orange line indicates
95% Cls, and the shading around the blue line indicates 95% prediction intervals.



Natural Experiments: Synthetic controls

gan- +reatmend
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Figure Source: https://medium.com/@chyun55555/synthetic-control-method-for-causal-inference-basics-
with-simple-mathematics-c61fc42fd472



Synthetic controls Examples

Original Investigation
August 27, 2021

Association of Medicaid Managed Care Drug Carve
Outs With Hepatitis C Virus Prescription Use

Samantha G. Auty, MS'; Paul R. Shafer, PhD'; Stacie B. Dusetzina, PhD?; et al

Synthetic Control Methods for Comparative Case
Studies: Estimating the Effect of California’s
Tobacco Control Program

Alberto ABADIE, Alexis DIAMOND, and Jens HAINMUELLER

» Author Affiliations | Article Information

JAMA Health Forum. 2021;2(8):e212285. doi:10.1001/jamahealthforum.2021.2285
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Natural Experiments: Instrumental Variables
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Instrumental Variables Examples

Original estgation ) American Journal of Preventive Medicine :
April 22, 2019 s &N

] ] i i i 4’ A\. v-', Volume 50, Issue 2, February 2016, Pages 161-170 =
Association Between Receipt of a Medically Tailored s
Meal Program and Health Care Use N
jz:r\]t'.siteﬁg\jv'i\;zé:lI'?/;Sl\(/l::;;'m-“; Jean Terranova, JD; Liisa Randall, PhDS; Kevin Cranston, MDiv®; David B. Waters, MAZ; Receipt Of Preventive Service S After Oreg0n7s
» Author Affiliations | Article Information Randomized Medicaid Experiment

JAMA Intern Med. 2019;179(6):786-793. doi:10.1001/jamainternmed.2019.0198

Miguel Marino PhD ' 2 9 i, Steffani R. Bailey PhD !, Rachel Gold PhD, MPH 34,

Megan J. Hoopes MPH 3, Jean P. O’Malley MPH 2, Nathalie Huguet PhD *, John Heintzman MD !,
Charles Gallia PhD °, K. John McConnell PhD &, Jennifer E. DeVoe MD, DPhil 1 3
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Just the tip of the iceberg...




Motivation

= Recognized impact of social risk on person health
= Examples: food, housing, transportation insecurity

» Calls for health care based social needs assessment
= Screening tools incorporated into EHR platforms

Will the EHR tools be used?
Are there interventions to help promote tool adoption?



Simple Natural Experiment |

= ] clinic receives support to increase SDH screening
= ] clinic does not

= Support begins on a known date t
= SDH screening data before and after t for both clinics

Does the support affect a change?



Controlled Pre/Post Design
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Comparative Interrupted Time Series

SDH Screening
SDH Screening

Time Time

Difference in Differences = (Slopelnt2 — SlopeC2) — (Slopelntl - SlopeC1)




Simple Natural Experiment |l

= A new state program incentivizes SDH screening
= All clinics must enroll, have 18 months to do so
= Each clinic enrolls at different time

= Clinics not yet enrolled act as controls

Does the new state program increase SDH screening?



Multiple Baseline Comparison
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Image from: Hawkins et.al The Multiple Baseline Design for Evaluating Population-based Research. AJPM 2007.



Free-range Organic All Natural Experiment

H screening

* 72 interventions aimed to Improve cling
' SCEND)

= 26 clinics received implement
= 13 clinics received mone
= 7 of these clinics r
= Large pool o

Did either interve rk, independently or in combination?



CRISP Aims

AHC only
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Controlled Pre/Post Design
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CRISP Additional Detalil

= Monthly data, March 2018- April 2023
= st intervention start date September 2018

= 13t (last) intervention start date February 2021

* The 7 dual clinics each have two distinct start dates
= From 75 to 608 days apart
= 3 began with AHC, 4 began with ASCEND



Did either intervention work, independently?

= Did implementation support yield effect? (ASCEND SW-CRT):

= Gold R, et.al. Implementation Support for a Social Risk Screening and
Referral Process in Community Health Centers. New England Journal of
Medicine Catalyst Innovations in Care Delivery. 2023.

= Did monetary incentives yield effect? (AHC Natural Experiment):

Multiple Baseline
Comparison

Not yet treated
act as controls




Was any intervention better than none?

= Match control clinics using 6-month baseline summaries:
= SDH screening rate
= Total encounters, distinct patients

= % age 18+, female, Hispanic, non-Hispanic Black, non-English
preferrlng pubhcmsurance uninsured

" Expansion state, FQHC, years active at study start, rurality, onsite
social services, primary care : .
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CRISP it's free-range organic all natural!!l

any intervention vs. none
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Callaway & Sant’Anna

Journal of Econometrics 225 (2021) 200-230

e B Contents lists available at ScienceDirect
v Journal of Econometrics

¥

FI SFVIER journal homepage: www.elsevier.com/locate/jeconom

Difference-in-Differences with multiple time periods™
Brantly Callaway °, Pedro H.C. Sant’Anna ”*

* Department of Economics, University of Georgia, United States of America
b Department of Economics, Vanderbilt University, United States of America




Callaway & Sant’Anna DiD Estimator
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Was dual intervention better than single_intervention?

= Duals vs. AHC-only

= Subset Duals to clinics receiving AHC first
= Pre-period: monetary incentives
= Post-period: additional implementation support

= Duals vs. ASCEND-only:
» Subset Duals to clinics receiving ASCEND first
* Pre-period: implementation support
= Post-period: additional monetary incentives



Future Potential in Natural Experiments

= Natural experiments can be strengthened by the inclusion of
additional features and data sources
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Future Potential in Natural Experiments

= Increasing the role of qualitative approaches

ry ; ;
Types of Qualitative Research Methods ,

+

B QuestionPro




Future Potential in Natural Experiments:
Target Trials

“The goal of target trial emulation is to avoid making fundamental errors that
can result in erroneous causal conclusions.”

How would an observational study be conducted if it were an RCT?

Recall: RCTs remain the gold standard study design for causal inference
* Pro: By design, treatment and outcomes not confounded, through randomization of treatment
* Pro: Time O for follow-up clearly defined by study protocols
« Con: Not always practical/feasible/ethical

« Con: Strict inclusion/exclusion criteria and intent-to-treat analysis may limit real-world
generalizability

Pragmatic trials focus on informing real-world practice, though at some potential costs to
internal validity

Target trial emulation helps to rigorously define goals of observational study
* Necessarily emulating pragmatic rather than fully explanatory trials



Target Trial Emulation: Traction
JAMA | Original Investigation
m Emulation of Randomized Clinical Trials With

Views 18,813 | Citations7 | Altmetric 108 Nonrandomized Database Ana|y5eS
Results of 32 Clinical Trials

Shirley V. Wang, PhD, ScM; Sebastian Schneeweiss, MD, ScD; and the RCT-DUPLICATE Initiative

Download PDF () (f) Morev CME & MOC (&) Cite This (© Permissions

JAMA Guide to Statistics and Methods
December 12, 2022

Target Trial Emulation IMPORTANCE Nonrandomized studies using insurance claims databases can be analyzed to
; produce real-world evidence on the effectiveness of medical products. Given the lack of
A Framework for Causal Inference From Observational
baseline randomization and measurement issues, concerns exist about whether such studies
Data produce unbiased treatment effect estimates.

—— JAMA Internal Medicine Search All ~  Enter Search Term

[ ]
thebm] covid-19 Research v  Educationv News & Views v Campaigns~

Research Views 87,248 | Citations 281 | Altmetric 995
Nirmatrelvir and risk of hospital admission or death in adults with covid-19: Download PDF ® @ Morev @ citeThis (© Permissions
emulation of a randomized target trial using electronic health records

Original Investigation

BMJ 2023 ;381 doi: https://doi.org/10.1136/bmj-2022-073312 (Published 11 April 2023)
Cite this as: BMJ 2023;381:e073312

October 20, 2020

Association Between Early Treatment With
Article Related content Metrics Responses Peer review Tocilizumab and Mortality Among Critically IUL Patients
With COVID-19

Yan Xie, senior clinical epidemiologist™ 2 3, Benjamin Bowe, senior biostatistician 2, Ziyad Al-Aly , director’ 2456 Shruti Gupta, MD, MPH'; Wei Wang, PhD2; Salim S. Hayek, MD3; et al



Target Trial Emulation: Example
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Original Research | 3 January 2017

Effectiveness of Screening Colonoscopy to
Prevent Colorectal Cancer Among Medicare
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Target Trial Emulation: Steps

TTE as a 2-step process

Articulate causal question in form of protocol of a hypothetical randomized trial
that would provide the answer

» Eligibility criteria

« Treatment strategies

« Treatment assignment

« Start and end of follow-up

* QOutcomes

e Causal contrasts

Explicitly emulate components of protocol using observational data

» Potential confounders for adjustment?
« Take care with (mis)alignment of exposure, assignment, follow-up times

« See:Hernan et al. (2016) - Specifying a target trial prevents immortal time bias and other self-inflicted
injuries in observational analyses



Steps for setting up Natural Experiment
Analyses

1. ldentify the event and conceptualize the potential causal
oathway from the event to your health outcome of interest

2. |dentity and define intervention and control groups

o

dentity your research design (e.g. Diff-in-diff, etc.)

4. Collect as many covariates as possible and check between
group differences

Assess pre-intervention parallel trends (it applicable)
Perform a power analysis

Run your natural experiment method and interpret

@ N o U

Perform all your planned sensitivity analyses
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Thank youl!!

Miguel Marino : marinom@ohsu.edu Twitter: @MmMiguelmM

Jorge Kaufmann: kaufmjor@ohsu.edu

For more information, please visit: www.primerlab.org
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