Evaluating Social Care Natural Experiments

Miguel Marino, PhD and Jorge Kaufmann, ND MS Department of Family Medicine Oregon Health & Science University PRIMER Center

(PRIMER CENTER)

SIREN METHODS CONVERSATIONS

Outline of today's talk

- Definitions relevant to Natural Experiments
- Overview of Common Methods w/ Examples
- Pragmatic Motivating Example: CRISP Study
- Recent Developments w/ Time-varying Start Times
- Future Potential in Natural Experiments
- Checklist when designing an analysis for a Natural Experiment

Social Interventions Research & Evaluation Network

About Us ✓ News & Events ✓ Engagement Grants

Randomized Trials

Realistic view of most scientific studies

Definition of Natural Experiments

 Any event not under the control of a researcher that divides the population into exposed ("intervention") and unexposed ("control") groups.

Source: Craig, Peter, et al. "Using natural experiments to evaluate population health interventions: new Medical Research Council guidance." J Epidemiol Community Health 66.12 (2012): 1182-1186.

How to determine if it's a Natural Experiment?

Source: Wharam F. What are Natural Experiments and Why Should we Study Them? https://www.uclahealth.org/sites/default/files/documents/Final%20Frank%20Day%202%20slides.pptx

Natural Experiments: Difference-in-differences

Figure Source: https://rpubs.com/Thomas_Buddemberg/930519

Difference-in-differences Examples

FREE

Research Letter

August 20, 2021

Association of Remote vs In-Person Benefit Delivery With WIC Participation During the COVID-19 Pandemic

Aditi Vasan, MD, MSHP¹; Chén C. Kenyon, MD, MSHP¹; Christina A. Roberto, PhD²; Alexander G. Fiks, MD, MSCE¹; Atheendar S. Venkataramani, MD, PhD²

 \gg Author Affiliations ~~|~~ Article Information

JAMA. 2021;326(15):1531-1533. doi:10.1001/jama.2021.14356

NATURAL EXPERIMENTS

Disparities in Biomarkers for Patients With Diabetes After the Affordable Care Act

Marino, Miguel PhD^{*,+}; Angier, Heather PhD, MPH^{*}; Fankhauser, Katie MPH^{*}; Valenzuela, Steele MS^{*}; Hoopes, Megan MPH[‡]; Heintzman, John MD, MPH^{*,‡}; DeVoe, Jennifer MD, DPhil^{*,‡}; Moreno, Laura MPH^{*}; Huguet, Nathalie PhD^{*}

Author Information \odot

Medical Care 58():p S31-S39, June 2020. | DOI: 10.1097/MLR.00000000001257

Natural Experiments: Interrupted time series

Source: Turner, S.L., et al. Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series. BMC Med Res Methodol 21, 134 (2021).

Interrupted time series Examples

Original Investigation

November 1, 2022

Association of Texas' 2021 Ban on Abortion in Early Pregnancy With the Number of Facility-Based Abortions in Texas and Surrounding States

Kari White, PhD, MPH^{1,2}; Gracia Sierra, PhD, MS^{2,3}; Klaira Lerma, MPH^{2,3}; <u>et al</u>

» Author Affiliations | Article Information

JAMA. 2022;328(20):2048-2055. doi:10.1001/jama.2022.20423

Original Investigation | Medical Education

January 19, 2021

Measurement of American Indian and Alaska Native Racial Identity Among Medical School Applicants, Matriculants, and Graduates, 1996-2017

Erik Brodt, MD^{1,2}; Steele Valenzuela, MS^{3,4}; Allison Empey, MD^{5,6}; Amanda Bruegl, MD, MS^{7,8}; Dove Spector, BS^{9,10}; Miguel Marino, PhD^{1,11,12}; Patricia A. Carney, PhD, MS¹

» Author Affiliations | Article Information

JAMA Netw Open. 2021;4(1):e2032550. doi:10.1001/jamanetworkopen.2020.32550

Figure 1. Number of Applicants From 1996-2017

Blue diamonds indicate the observed raw counts for the respective years for applicants. The shading around the orange line indicates 95% CIs, and the shading around the blue line indicates 95% prediction intervals.

Natural Experiments: Synthetic controls

Figure Source: https://medium.com/@chyun55555/synthetic-control-method-for-causal-inference-basics-with-simple-mathematics-c61fc42fd472

Synthetic controls Examples

Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program

Alberto ABADIE, Alexis DIAMOND, and Jens HAINMUELLER

Figure 1. Trends in per-capita cigarette sales: California vs. the rest of the United States.

Figure 2. Trends in per-capita cigarette sales: California vs. synthetic California.

Original Investigation

August 27, 2021

Association of Medicaid Managed Care Drug Carve Outs With Hepatitis C Virus Prescription Use

Samantha G. Auty, MS¹; Paul R. Shafer, PhD¹; Stacie B. Dusetzina, PhD²; <u>et al</u>

\gg Author Affiliations ~~|~~ Article Information

JAMA Health Forum. 2021;2(8):e212285. doi:10.1001/jamahealthforum.2021.2285

Natural Experiments: Instrumental Variables

Instrumental Variables Examples

Original Investigation

April 22, 2019

Association Between Receipt of a Medically Tailored Meal Program and Health Care Use

Seth A. Berkowitz, MD, MPH^{1,2,3,4}; Jean Terranova, JD⁵; Liisa Randall, PhD⁶; Kevin Cranston, MDiv⁶; David B. Waters, MA⁵; John Hsu, MD, MBA, MSCE^{7,8}

» Author Affiliations | Article Information JAMA Intern Med. 2019;179(6):786-793. doi:10.1001/jamainternmed.2019.0198

American Journal of Preventive Medicine Volume 50, Issue 2, February 2016, Pages 161-170

Research Article

Receipt of Preventive Services After Oregon's Randomized Medicaid Experiment

<u>Miguel Marino PhD</u>^{1 2} <u>Signa Steffani R. Bailey PhD</u>¹, <u>Rachel Gold PhD, MPH</u>^{3 4}, <u>Megan J. Hoopes MPH</u>³, Jean P. O'Malley MPH², <u>Nathalie Huguet PhD</u>¹, John Heintzman MD¹, <u>Charles Gallia PhD</u>⁵, <u>K. John McConnell PhD</u>⁶, Jennifer E. DeVoe MD, <u>DPhil</u>^{1 3}

Just the tip of the iceberg...

Motivation

- Recognized impact of social risk on person health
 Examples: food, housing, transportation insecurity
- Calls for health care based social needs assessment
- Screening tools incorporated into EHR platforms

Will the EHR tools be used?

Are there interventions to help promote tool adoption?

Simple Natural Experiment I

- 1 clinic receives support to increase SDH screening
 1 clinic does not
- Support begins on a known date t
- SDH screening data before and after t for both clinics

Does the support affect a change?

Controlled Pre/Post Design

Difference in Differences = (Int 2 – C2) – (Int 1 - C1)

Comparative Interrupted Time Series

Difference in Differences = (SlopeInt2 – SlopeC2) – (SlopeInt1 - SlopeC1)

Simple Natural Experiment II

- A new state program incentivizes SDH screening
- All clinics must enroll, have 18 months to do so
- Each clinic enrolls at different time
- Clinics not yet enrolled act as controls

Does the new state program increase SDH screening?

Multiple Baseline Comparison

Image from: Hawkins et.al The Multiple Baseline Design for Evaluating Population-based Research. AJPM 2007.

Free-range Organic All Natural Experiment

- 2 interventions aimed to improve clinic
- 26 clinics received implementation
- 13 clinics received moneta
- 7 of these clinics rep
- Large pool of

Did either interve

ork, independently or in combination?

DH screening (ASCEND)

CRISP Aims

AHC only \$ incentive Low support

AHC + ASCEND \$ incentive High support

<u>Controls</u> No \$ incentive No support ASCEND only No \$ incentive High support

> V V V

Time

CRISP Additional Detail

- Monthly data, March 2018- April 2023
- 1st intervention start date September 2018
- 13th (last) intervention start date February 2021

- The 7 dual clinics each have two distinct start dates
 - From 75 to 608 days apart
 - 3 began with AHC, 4 began with ASCEND

Did either intervention work, independently?

Did implementation support yield effect? (ASCEND SW-CRT):

- Gold R, et.al. Implementation Support for a Social Risk Screening and Referral Process in Community Health Centers. New England Journal of Medicine Catalyst Innovations in Care Delivery. 2023.
- Did monetary incentives yield effect? (AHC Natural Experiment):

Multiple Baseline Comparison

Not yet treated act as controls

Was any intervention better than none?

- Match control clinics using 6-month baseline summaries:
 - SDH screening rate
 - Total encounters, distinct patients
 - % age 18+, female, Hispanic, non-Hispanic Black, non-English preferring, public insurance, uninsured
 - Expansion state, FQHC, years active at study start, rurality, onsite social services, primary care

Y

If all intervention clinics having same intervention start date

CRISP it's free-range organic all natural!!!

any intervention vs. none

Time

Difference in Differences (DiD) = (Slope2 – Slope2) – (Slope1 - Slope1) ???

Journal of Econometrics 225 (2021) 200-230

Difference-in-Differences with multiple time periods*

Brantly Callaway^a, Pedro H.C. Sant'Anna^{b,*}

^a Department of Economics, University of Georgia, United States of America ^b Department of Economics, Vanderbilt University, United States of America

Callaway & Sant'Anna DiD Estimator

Y

A difference-in-differences will be estimated at each group-time combination (13 in CRISP).

These DiD can then be aggregated into a single average treatment effect.

Time

Was dual intervention better than single intervention?

Duals vs. AHC-only

- Subset Duals to clinics receiving AHC first
- Pre-period: monetary incentives
- Post-period: additional implementation support
- Duals vs. ASCEND-only:
 - Subset Duals to clinics receiving ASCEND first
 - Pre-period: implementation support
 - Post-period: additional monetary incentives

Future Potential in Natural Experiments

 Natural experiments can be strengthened by the inclusion of additional features and data sources

Data Weighting Explained

GeoPoll

National Institute on Minority Health and Health Disparities Research Framework

		Levels of Influence*				
		Individual	Interpersonal	Community	Societal	
Domains of Influence (Over the Lifecourse)	Biological	Biological Vulnerability and Mechanisms	Caregiver–Child Interaction Family Microbiome	Community Illness Exposure Herd Immunity	Sanitation Immunization Pathogen Exposure	
	Behavioral	Health Behaviors Coping Strategies	Family Functioning School/Work Functioning	Community Functioning	Policies and Laws	
	Physical/Built Environment	Personal Environment	Household Environment School/Work Environment	Community Environment Community Resources	Societal Structure	
	Sociocultural Environment	Sociodemographics Limited English Cultural Identity Response to Discrimination	Social Networks Family/Peer Norms Interpersonal Discrimination	Community Norms Local Structural Discrimination	Social Norms Societal Structural Discrimination	
	Health Care System	Insurance Coverage Health Literacy Treatment Preferences	Patient-Clinician Relationship Medical Decision-Making	Availability of Services Safety Net Services	Quality of Care Health Care Policies	
Health Outcomes		A Individual Health	Family/ Organizational Health	合 Community 合合 Health	Health	

National Institute on Minority Health and Health Disparities, 2018

*Health Disparity Populations: Race/Ethnicity, Low SES, Rural, Sexual/Gender Minority Other Fundamental Characteristics: Sex/Gender, Disability, Geographic Region

Future Potential in Natural Experiments

Increasing the role of qualitative approaches

Future Potential in Natural Experiments: Target Trials

"The goal of target trial emulation is to avoid making fundamental errors that can result in erroneous causal conclusions."

- How would an observational study be conducted if it were an RCT?
- Recall: RCTs remain the gold standard study design for causal inference
 - **Pro:** By design, treatment and outcomes not confounded, through randomization of treatment
 - **Pro:** Time 0 for follow-up clearly defined by study protocols
 - **Con:** Not always practical/feasible/ethical
 - **Con:** Strict inclusion/exclusion criteria and intent-to-treat analysis may limit real-world generalizability
- Pragmatic trials focus on informing real-world practice, though at some potential costs to internal validity
- Target trial emulation helps to rigorously define goals of observational study
 - Necessarily emulating pragmatic rather than fully explanatory trials

Target Trial Emulation: Traction

JAMA*	Search All - Enter Search Terr			earch Term				
This Issue Views 18,813 Citations 7 Altmetric 108								
🔁 Download PDF	() (f) More \bigtriangledown	🔚 CME & MOC	🕡 Cite This	© Permissions				

JAMA Guide to Statistics and Methods

December 12, 2022

Target Trial Emulation A Framework for Causal Inference From Observational Data

JAMA | Original Investigation

Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses Results of 32 Clinical Trials

Shirley V. Wang, PhD, ScM; Sebastian Schneeweiss, MD, ScD; and the RCT-DUPLICATE Initiative

IMPORTANCE Nonrandomized studies using insurance claims databases can be analyzed to produce real-world evidence on the effectiveness of medical products. Given the lack of baseline randomization and measurement issues, concerns exist about whether such studies produce unbiased treatment effect estimates.

Target Trial Emulation: Example

Annals of Internal Medicine[®]

LATEST ISSUES IN THE CLINIC JOURNAL CLUB MULTIMEDIA CME / MOC AUTHORS / SUBMIT

Original Research | 3 January 2017

Effectiveness of Screening Colonoscopy to Prevent Colorectal Cancer Among Medicare Beneficiaries Aged 70 to 79 Years

A Prospective Observational Study

Xabier García-Albéniz, MD, PhD 📽, John Hsu, MD, MBA, MSCE, Michael Bretthauer, MD, PhD, and Miquel A. Hernán. MD, DrPH View fewer authors 🗙

Target Trial Emulation: Steps

TTE as a 2-step process

Articulate causal question in form of protocol of a hypothetical randomized trial that would provide the answer

- Eligibility criteria
- Treatment strategies
- Treatment assignment
- Start and end of follow-up
- Outcomes
- Causal contrasts

Explicitly emulate components of protocol using observational data

- Potential confounders for adjustment?
- Take care with (mis)alignment of exposure, assignment, follow-up times
 - See: Hernán et al. (2016) Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses

Steps for setting up Natural Experiment Analyses

- 1. Identify the event and conceptualize the potential causal pathway from the event to your health outcome of interest
- 2. Identify and define intervention and control groups
- 3. Identify your research design (e.g. Diff-in-diff, etc.)
- 4. Collect as many covariates as possible and check between group differences
- 5. Assess pre-intervention parallel trends (if applicable)
- 6. Perform a power analysis
- 7. Run your natural experiment method and interpret
- 8. Perform all your planned sensitivity analyses

Social Interventions Research & Evaluation Network

About Us V News & Events V Engagement Grants

Thank you!!!

Miguel Marino : <u>marinom@ohsu.edu</u> Twitter: @MmMiguelmM Jorge Kaufmann: <u>kaufmjor@ohsu.edu</u>

For more information, please visit: www.primerlab.org

